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The fact0rization of ligand field parameters into angular and radial contributions is examined. The 
angular term breaks up into a product of geometric and chemical environment tensors each of which 
contributes to the magnitude of the distortion parameter. The purely geometric function may be 
expressed as axial projections which need not represent metal-ligand bond positions. This permits 
direct comparison of D,e and D,, h group properties. This projection description involves no approxi- 
mations and since the operators are Normalized Spherical Harmonic Hamiltonians the derived radial 
integrals are all scalars of the octahedron and comparable between groups in different subduction 
chains. The projection factorization aids the description of intermediate symmetries. The tetragonal 
antiprism, the trigonal prism and the trigonal bipyramid each are capable of intermediate symmetry 
derived from cubic figures. In each case the Hamiltonian contains only one independent parameter. 
Each of these special conditions can be used as the geometric origin in distortion space diagrams. 

The radial function r 4 is shown to be a function of n 8. Only a small increase in the principal 
number n of d orbitals is needed to account for observed values of DQ and these are justified using a 
United Atom model of transition metal complexes. The ratio of radial functions A ~ in distortion 
parameters then represents slight variations in n induced by different ligands. 
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1. Introduction 

In the deve lopmen t  of the theory  of  l igand fields, a single centre expans ion .  
of the p e r t u r b a t i o n  of the centra l  ion  wave funct ions is often used. Such models  
require  the def ini t ion of d i s to r t i on  pa r ame te r s  which, t aken  in mul t ip les  defined 
by  the symmet ry  of  the complex,  are used to fit the observed  separa t ions  of  l igand 
field terms [1, 2]. If p r o p e r l y  defined these pa rame te r s  d i sp lay  the to ta l  symmet ry  
of  the po in t  g roup  of  the complex.  This  does not  imply  tha t  they behave  as spheri-  
cally symmet r i c  objects.  They  m a y  car ry  all the vector  or  tensor  c o m p o n e n t  pro-  
pert ies a l lowed by  the to ta l ly  symmet r i c  representa t ion .  It is a lways possible,  
however ,  to descr ibe  a vector  or  tensor  c o m p o n e n t  as a p roduc t  of a scalar  func- 
t ion and  the unit  vectors  of  the space. It is thus formal ly  poss ible  to factorize the 
d i s to r t ion  pa r ame te r s  into p roduc t s  of scalar  energies and  dimensionless  func- 
t ions of  the geomet ry  of the complex.  

In l igand field theories,  the l igand p e r t u r b a t i o n  po ten t ia l  is usual ly  descr ibed 
using Legendre  po lynomia l s .  In  po la r  coord ina tes  this expans ion  does factorize 
into a p roduc t  of a scalar  energy depend ing  only  on rad ia l  funct ions and  an 
angular  descr ip t ion  of  the geometry .  However ,  this geomet r ic  funct ion depends  
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not only on the spatial arrangement of the ligands but also on their site strengths 
[3]. Thus the geometric description is properly defined only in a Hilbert space 
having chemical influence unit vectors. This space can be mapped onto three 
dimensional position space by factorizing these unit vectors into functions of 
ligand displacement and site strengths but such a factorization is arbitrary. One 
such factorization is developed in this work. 

Whatever mapping into three dimensional position space is chosen however, 
the complete removal of angular terms from the radial energy functions can be 
achieved. After this separation, the Legendre expansion leaves a radial term in 
the form of a discontinuous sum of two integrals. This discontinuity arises be- 
cause a mathematical singularity occurs in the expansion series at the metal- 
ligand distance. If the metal orbitals are compact the external integral is negli- 
gible. If the external integral cannot be neglected, the radial wave function itself 
can be regarded as an approximation to a more complete momentum space 
description [4]. As a first order correction in these circumstances, the use of 
radial wave functions with increasing, non-integer values of the principal quan- 
tum number n is proposed to account for the magnitude of ligand field par- 
ameters. This correction can be demonstrated semiquantitatively by construction 
of united atom diagrams of individual metal complexes. 

2. General Theory 

2.1. The Factorization of Angular and Radial Contributions 
In a position space description, the complete Hamiltonian operator of a com- 

plexed ion can be expressed in single-centre form as [5], 

U =  . . . .  h V.2 + + E Z (1) 
i=1  2m i=1  ~=i  j > i r i j  ri~ 

in which the operator acts on N electrons each of which is subjected to the 
perturbing potential H v of off-centre atoms. This perturbation operator is ex- 
panded as a Legendre polynomial; 

P I ~  ~ 4 ~  [ { r k < ~ k , ]  
Hp= E - Z Yqk(04) ) Z, Y~ (O,~b~) (2) 

2k + 1 ~ ~gT-) �9 ~ = l  ria ~=1 k = 0  q=k 

In ligand field theory one of the two distances r< or r> is taken as the metal ligand 
distance when performing the radial integration. It is clear from the last term 
of (2) however that perturbation is a function of both charge Z~ and distance r 
and is best represented as a field gradien t vector. If the system has lower symmetry 
than cubic, then two or possibly three orthogonal field gradient vectors are 
required and the radial operator must be  further factored to accomodate these 
requirements. As an example, for point groups having two orthogonal gradients, 

=1 k = 0  q=-k 2 k + l  Yqk(O(~ + Y~ (OS~ 
(3) 

- k* ] t (naa k + nEb k) Y~ (0~r 
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in which n A and n E are the number of occupied axial and equatorial ligand sites 
and a and b their respective field gradients. The presence of terms in the sum- 
mations over k and q is governed by the requirement that the Hamiltonian has 
the total symmetry of the point group of the complex. The coefficients of each 
term are found by projection or symmetry adaptation techniques [2, 3] or may 
be found using the Subduction Criterion and tabulated values of Subduction 
Coefficients, S(m) [6, 7]. 

Two types of subgroups of the generative group O h will be considered [8]. 
The first type is those with a principal axis of order 4 or 3 which retains a degen- 
erate representation and the second is the kind having only a C2 quantization 
axis and no degenerate representations. 

The first group (Type I) can be further subdivided. Those point groups D, 
and C,v in which n > 3 and all D,e and D,h groups retain a true E representation. 
The groups C,h and C, have formally non-degenerate representations but some 
pairs are conjugate, giving rise to identical physical observables and can be con- 
sidered as degenerate. In both types of point group, by choosing the z axis of a 
Cartesian coordinate system to be colinear with the major axis, the x and y 
coordinate axes are degenerate. Thus for both types of group only two classes of 
tensor components of Oh can appear in the Hamiltonian of the subgroup. The 
combinations subduced from IA1 0]c~ are symmetric while those subduced from 
IE 0lc~ or IT 2 0lc~ and for Ca, [T, 0]c~, are antisymmetric [-7]. 

The parameters associated with each l manifold of the antisymmetric com- 
binations are known conventionally as distortion parameters because they 
measure the deviation of the electronic structure from that in cubic complexes. 
For d electrons, application of the Wigner-Eckart theorem yields non-vanishing 
parameters if l--2 and 4. These integers will be used to identify the distortion 
parameters D(k) whether they arise from Ig0+l or Ir20+[. These D(k) are not 
the conventional parameters Ds and Dt since they are derived using Normalized 
Spherical Harmonic (N.S.H.) Hamiltonian operators. The set of D(k) contain all 
angular contributions of the antisymmetric operator and all appropriate nor- 
malization coefficients. For clarity they will be labelled DS, D T [9]. 

With this approach to factorization the angular relationships of the central 
field can be evaluated irrespective of the form taken by the radial perturbation. 
For any order k of harmonics, the ratio of the two permitted combinations is; 

D(k)sy M 2 S(m)sYM rk ~ q- bk+l ] q 
- -  n , k , q  

D(k)ANT' Z S(m)ANT' rk ~ + bk+l ]*q *q 
n , k , q  

+ ~ (naak 

1 ] (4) 
+ ~ (nAa k + neb k) ykyk* 

l 
E S(m  MY2 
.kq _ (AO. AO*)o h 
Z S(m)ANT'Ykq yqk, (FO. rO*)o h 
nkq 
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Thus the ratio of parameters is a function only of the angular relationship in the 
Hilbert space for the complex in which the orthogonal field gradients a and b 
are defined. 

In cubic systems when a = b, the separation of the angular functions leaves 
a radial Hamiltonian. This operator is formulated from the Legendre expansion 
as a sum of two radial operators integrated over two separate spatial volumes 
with a discontinuity at the field gradient length a. For convenience the integrated 
radial quantity may be written; 

r-~= (R"~"~lrk<lR"~m) 2+ T ] 
ak + l -[- ak ( Rnlm Rnlm) 

= (Rnlmlrk<lRnlrn) l q _ a 2 k + l  

a k + 1 (R~l,, I?<lR,zm) 
In many traditional treatments of ligand field theory the second term in the 

expansion is neglected 1,10]. This is a valid approximation when the metal orbitals 
are compact and is especially applicable to ligand field treatments of lanthanide 
complexes. Its application to transition metal complexes is less valid 1,2, 10, 11], 
and a complete interpretation of parameter magnitudes requires estimation of 
the second integral. This may be done either in a central field model involving 
the matching of radial wave functions for continuity at the field gradient vector a 
1-5] or by inclusion of ligand orbital character in the metal wave functions in an 
LCAO approach 1,11-1. 

This discontinuous behaviour of the Legendre expansion can be transcended 
by a reformulation of ligand field theory in a momentum space realization of 
both the operator and the wave functions [-4]. Momentum space is four dimen- 
sional and permits the use of the principal quantum number n as a well defined 
specification of the momentum wave functions. These are; 

~g(~2)= I _ E  E Z J / - , / L  ,am , j,J . (6) 
PO v)~lt j nlrn L 

In these functions the orbitals of each atom centered at Rj and represented by 
the four dimensional spherical harmonics Y~m are projected by the ~ z .  functions ~nlm 
1,,12] onto the origin of the point group. Each of these orbitals has a root mean 

Z 
square energy Po = -  and makes a contribution to the molecular eigenvalue 

n 
according to the linear combination of central spherical harmonics Y~u making 
up the complete molecular orbital. The projection coefficients ~,~,~v~ when ex- 
pressed in polar coordinates allow a separation of angular and radial functions. 
The mapping of l and m onto 2 and # is equivalent to conventional symmetry 
adaptation of both metal and ligand group orbitals except that the orthonomality 
conditions are uniquely defined by the structure of the momentum space 
group O (4). 

The subduction of the radial functions from momentum space either into the 
chemical gradient Hilbert space or into three dimensional position space is less 
familiar and discussed in a later section. 
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2.2. Factorization of Angular Terms in Low Symmetries 
The desired factorizations of the D(k) are achieved by direct evaluation of the 

crystal field contributions of all ligands followed by rearrangement of terms. This 
is applicable to DQ as well as distortion parameters and is very instructive. 
Substituting point charges of an octahedral field quantized on C], 

DQ IAIO+I4= ~ ~I~  Ze2 ~ ~ {8(2) ~ a s + ~g-] 1 

(7a) 

in which a and b are the metal-ligand distances on the z axis and the x, y plane 
respectively. This of course collapses further at the perfect octahedron but left in 
this form the operator clearly demonstrates the "average environment rule" which 
has long been used to estimate Dq values in tetragonal complexes. A similar 
treatment of the antisymmetric combination yields D T; 

DTIEO+]4=~ ~ I ~  ]/5 { 8(2) 3(4) 1 ze2-~ V12 I T  + b 5 ] Y~ 

(7b) 

These familiar forms of DQ and D Tmay be parameterized in an alternative 
way. By addition of Eqs. (7a) and (7b), two new equations in the coefficients of 
Yo 4 and (y4 + 1/44) can be generated. Solving these equations and retaining the 
expanded evaluation of y 4 ,  the alternative form of DQ becomes; 

DQ=~/~ ~ l ~ Z e Z ~  16(~g-+ ~--g- ) (Sa) 

An equivalent set of substitutions yields: 

DT=~V~ze2~-~ /5~  28( la5 b15 . (8b) 

As required, DT like the un-normalized Dt vanishes at the perfect figure and as 
written obtains magnitude only if a geometric distortion occurs. A similar fac- 
torization of the second order parameter D(2) yields; 

DS'EO+'4= ~ ~ ze2"~2 (-2(2)~ a 3 

. ' . D S = ~ ~ 8  ze2"/-2 4(-la-3 1 
b 3 �9 

(9) 



38 B.R. Hollebone and J. C. Donini 

In both D(4) and D(2) parameters a further modification is necessary if axial 
and equatorial ligands are chemically different. Each ligand produces a different 
second and fourth order effect on the d electrons and thus the (ze 2 r k) must be 
different on the axis and the plane. This has been previously recognized [3] by 
writing the D(k) as 

D(k) = CkZE e2 r~ -aU+ 1 bk+ 1 (10) 

in which A k = ZA rkA 
Z~ r~ 

Here A k is defined as the ratio of the chemical effects on the axis and plane for 
the k manifold. It must be emphasized that as defined, the chemical ratio is a 
necessary factor but its origin remains unspecified. Its use is discussed in a later 
section. 

The factorizations (7)-(9) are useful if a and b are identified as metal-ligand 
distances only in a restricted number of point groups. Fully generalized factored 
forms would be much more useful in distorted prisms and antiprisms and are 
necessary if the D3h physical chain is to be examined. Such general forms can be 
derived most conveniently from the symmetric and antisymmetric combinations 
written in polar coordinates. For the second order effect (9) becomes; 

DS[EO_}_,4~_~V~ ~ Ze2r2 a3 [(3 c0s20  - l) ]7o21 

- -  a 3  ( 1 1 )  

By defining 

- -  [(2 cos 2 0 - sin 2 0) 11o21 

Ze2a r2 (a sec 0) 2 (a CSC 0 )  2 ' 

R = a sec 0 

S = a csc0. (12) 

Substitution into (10) defines DS as 

D S = ~ n ~ / / ~ 8  Ze2r2{2(nA)a ~ - ~  I(nE)-/S2 j .  (13) 

Here nA and n E are the number of general identical symmetry points ol- the z 
and x (or y) axes respectively. These two positions in each case may or may not 
be occupied, that is, the Hamiltonian may refer either to sets of identical ligands 
or identical symmetry holes. Developments similar to those giving (1 l) yield the 
redefined fourth order parameters. The general form for the totally symmetric 
Hamiltonian is: 

DQIAIO+]= ~ / ~ - / 9 1 2 8  Ze2r4a 5 [C~ Y~ 
(14) 

+ C~A~(Y~*Y~+_ y_k, y_k4)]. 
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Quantized on a four-fold axis the parameter becomes; 

b/~  V 9 Ze2r--r [ ~ (  8(nA)(z) 24(nE)(x)(cotanO) 2 
(DQ)4  -128 a (a sec0) 4 (a cosec 0) 4 

3(nE)(x) ~ 1/~-] 3/~-5(2(nE)(x) ~[ 
(acosec0) 4] - V 24 + V ~ -  \ (a cosec 0) 4 )L 

(15) 

~ V  9 Ze2r4 V 7~[ 4(z) 7(x) l 
= 128 a (a  sec 0) 4 (a cosec0) 4 " 

The numbers (z) and (x) will be called the site strengths because (15) may refer 
either to an octahedron or a cube. Conventional ligand field substitution [10] 
gives the ratio of octahedral to cubic splittings as -8 /9 .  Moreover, examining 
the ratio of effectiveness of each of the eight ligands in a cube compared to each 
of the six in an octahedron reveals that the site strength of a ligand on a three- 
fold axis is - 2/3 that of a ligand on a four-fold axis. Thus, in order to adapt (15) 
to include cubic or tetrahedral as well as octahedral geometry, a factor selecting 
either three-fold or four-fold sites, the number of ligands and a normalizing 
constant must be introduced. The final general form for (DQ)4 becomes 

( 9 ) ( - 2 n  3 n6~) 31~ Ze 2 r "-T [ 4(z) 7(x) ] 
(DO)4 = 18 + 8 ~3~ a [ (a s~c-c 0) 4 (a cosec 0) 4 ]' 

(16) 

In this form n 3 and n 4 are respectively the number of ligands lying on three-fold 
or four-fold axes. In perfect cubic figures z = x = 1 but these relative site strengths 
may change with ligand replacement. 

The same set of parameters also force both DS and DT to vanish at cubic 
limits as expected. For the fourth order; 

1911 2 .  I ' l l  (DT)4= \ 8 / \  18 + V 128 a IV ~ - \ - ( ~ 4  

24(ne) (x) (cotan 0) 2 
(a cosec0) 4 

3(nE)(x)-1 1 / ~ - 1  3 ~ 5 ( 2 ( n ~ ) ( x )  1] 
+ (ac~ 4 ] + V 24 V 2 - \ ( a ~ 4 - ] ]  

-~- . 
18 6 81/3~ a (a sec 0) 4 (a cosec 0) 4 

(17) 

With this formalism, one no longer identifies the axial and equatorial tensor 
components with bond lengths. Their ratio is a measure of the effective geometric 
distortion of a cubic scalar potential. The factorization has the important advan- 
tage that this distortion is described in terms of square and fourth power pro- 
jections of a single scalar radius a. Thus, all parameters DQ, DS, and DT are 
essentially functions only of a and the projection angle 0. This places the "radial" 
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distortions of Dnh groups and the "angular" distortions of Dnd groups in the same 
model, permitting direct comparisons of all parameters between these groups. 

The second important advantage of this treatment is that it clarifies the 
meaning of the chemical ratio A k. This quantity (10) is clearly the ratio of the 
relative site strengths and most appear as a factor in all three parameters, not 
just the distortion parameters as indicated in earlier models [3]. The site strength 
ratio clearly appears in (16) as part of the average environment rule. 

The analysis of Type II symmetry groups can be derived as a natural extention 
of the Type I. There are now two classes of distortion parameters in each kmani- 
fold. The subduction rules leading to the desired components of O h in the 
Hamiltonian have been given elsewhere [9]. 

The first type of parameter describes the difference between the axial environ- 
ment and the average of that in the plane perpendicular to the quantizing axis. 
They may be defined as; 

�9 a k+l 2 ~bT T +: by 

in which the A x and Ay ratios are used to recognize.the different chemical 
environment on each Cartesian axis. 

The second type of parameter reflects the two in-plane projections. These 
parameters always arise from combinations of spherical harmonics of the type 
i1_+2 in these digonal quantizations. The parameters are; k) 

De(k) = CkZe 2 7 \~+~ A, (19) 
. b~ +1 �9 

Both types of parameter DA(k) and DE(k) can be recast into the component 
projection form by introducing a secondary projection angle q~ subtended with 
either the x or y axis in the xy plane. Clearly when q~ = 45 ~ De(k ) Vanishes and 
1)A(k ) becomes simply D(k) of Type I point groups [9]. 

3. Appl icat ions  to Intermediate  S y m m e t r i e s  

The forms of D(k)just discussed make the occurance of special solutions very 
obvious. Often in point groups of low formal symmetry one or more of the 
expected distortion parameters may vanish because of special angular relation- 
ships of the ligands. Many of these systems have been studied in isolation but 
may now be placed in the general subduction framework. Two types of inter- 
mediate symmetry which have not been systematically explored are the tetra- 
gonal antiprisms and trigonal prisms related directly to the octahedron. 

3.1. Tetraoonal Antiprisms 
Physically the tetragonal antiprism with D~e symmetry can be obtained by 

rotation of one face of a cube by 45 ~ Unlike any other D4d figure, this specific 
antiprism requires only one independent parameter to completely specify the 
Hamiltonian. 
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The second order effect remains zero during the facial rotation. This is proven 
either by direct substitution of ligand positions into the conventional form of 
Eq. (11) or by retaining the angle 0 = 54044 ' in the projection form. This latter 
procedure is possible because Y02 does not depend on the equatorial angle ~b. 

The two fourth order parameters DQ and DT are linearly dependent at the 
D~d limit. This can be demonstrated by solving the natural Hamiltonian operator 
in terms of the cubic parameters. The D4d fourth order Hamiltonian is simply; 

Hm~ = [D(4)]r Yo*. (20) 

This operator eigenstate is derived from those of the cube by the linear com- 
bination; 

2~ (DQ)4IAIO+[ + ~/5-~-2~ (DT)4IEO+I=[D(g)]4 Yo4 (21a) 

The antisymmetric combination vanishes; 

4 (DQ)4IAIO+I- ~4~(DT)4IEO+]=O. (21b) 

This may be seen physically since the four ligand contributions of the top face 
exactly cancel those of the bottom face at 45 ~ By the addition of (21 a) and (21 b) 
to eliminate (D T)4, the form of (DQ) 4 in D4d becomes; 

(DQ)4 Y2 = 1//~1~ [D(4)]4 r2 
[ 

(22a) 
~ 1 ~  [ 8(z) 9(x) _] 

.'. (DQ)4 = D~ (a sec0)4 (a cosec0)* ] " 

By subtraction to eliminate (DQ)4, (Dr)4 becomes; 

(DT)4 Y~ = 1 Z  [D(4)]4 y4 
[ 

(22b) 
. (DT)4= ~ 2 ~  D4 [ (a 8(Z) 9(x) 

' "  s ec  0) 4 (a c o s e c  0) 4 j 

in which D44 are the constants of (15) and (17). 
Clearly (DQ) 4 and (DT)4 display exactly the same projection dependence [13]. 

They are simply two contributions to a single parameter in the ratio 

(DQ)~t 
= ~ (23) (DT) 4 

Moreover this ratio is independent of the axial and equatorial projection lengths 
and thus gives no information concerning the geometry of a tetragonal antiprism. 
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Generalized forms of these parameters for D 4 complexes in terms of the 
relative facial twist angle e can be derived. From (15) and (21 a); 

1~72172 D~ [ 16(z) 23(x) 5(x) cos4e J (oQ)4 a [(a sec0) 4 (a cosec0) 4 (a cosec0) 4 ] (24a) 
[ 

and (17) and (21 b) yielding; 

(DT)4= ~ 1 ~  D4 [ 16(z) ll(x) 7(x)cos4c~ ] 
a (asec0) 4 (acosec0) 4 + ~ ~ J  (24b) 

which collapse to the cubic or antiprismatic solutions at e = 0 ~ and 45 ~ respec- 
tively. The projection contribution containing e arises solely from the ~b depend- 
ence of the Y24 harmonics. 

From this analysis two statements can be made. The second order effect (DS)4 
measures only the distortion of the axial and equatorial projections away from 
their cubic ratio, that is compression or elongation of the antiprism: The fourth 
order effect (DT)4 measures the facial twist angle which has two high symmetry 
positions, the cubic and Dgd geometries. At both these limits there is only one 
independent fourth order parameter, [D(4)] 4. 

3.2. Trigonal Prisms 

In the same spirit by which the tetragonal antiprism was formed by the facial 
twist of a cube, a trigonal prism may be formed by a 60 ~ facial twist of an octa- 
hedron. The trigonal prism so formed displays exactly the same kind of inter- 
mediate symmetry as the O4d body. Again the second order effect remains zero 
and at the D3h limit the fourth order parameters become linearly dependent. It 
is useful however to demonstrate their fully expanded forms. 

The trigonal quantization of the octahedron or cube requires the use of a 
projector which like that in the tetragonal case, passes through points containing 
the other set of defining axes, and must again subtend an angle of 54~ ' with 
the three fold quantizing axis (Fig. 2). The general forms of the parameters may 
be developed again in polar coordinates. Like the tetragonal quantization (13), 
(16), and (17), the trigonal Hamiltonian has two obvious symmetry sites on the 
axis. If the x axis is coincident with a C~ symmetry axis it also clearly contains 
two identical symmetry sites. Thus the projected form of parameters under three- 
fold quantization is very similar in appearance to that developed above. The 
second order parameter (DM)3 is identical to (DS)4 and the fourth order param- 
eters differ only in the substitution of Y~3 for Y+44 with a new normalization. 
The form of I1_+43 demands projection and this is taken by convention onto the 

plane (9) [ 
(DQ)3= \ 18 6 ] / ' ~  a ~ - \ ( a s e c 0 )  4 

24(nE) (x) (cotan 0) 2 3(hE) (x) ] 2~5240 , / ;~ [ (nE) (x) cotan 0~] 
- (a cosec0) 4 + (a cosec0) 4 ] - 2 _ _  V j~ I- ~ -)] 

(9_)( ) [ 8(z) 19(x) ] (25) 
2n3 n4 3 ~ 7  zeZ ~ (a sec0) 4 (a cosec0) 4 

= 18 6 2 4 1 ~  a 
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(i) 

43 

C4 

I / k  // 
~,""--~ , 'o5  ~, IV 
\\. " / - g  I ",/ / \  

\ " , /  1'b.' \ 
\ \./ _--/i" ""-. \ 

iT--/ 

(ii) 
Fig. 1. The three tetragonal prismatic bodies. (i) The cube and inscribed octahedron. (ii) The tetragonaI 

antiprism derived by 45 ~ facial rotation 

(i) 

C3 

I 

(ii) 
Fig. 2. The three trigonal prismatic bodies. (i) The octahedron. (ii) The trigonal prism derived by 60 ~ 

facial rotation and the inscribed trigonal bipyramid 

This version of (DQ) 3 has exactly the same value as (DQ)4 of Eq. (16) since the 
operator eigenstate functions are fully normalized in both developments. The 
conventional introduction [1] of the ratio of normalizing constants between 
(DQ) 4 and (DQ) 3 into the trigonal wave functions is not necessary. The cor- 
responding fourth order distortion parameter becomes; 

18 6 24 ]/3 a [ (a see0) 4 (a  c o s e c 0 )  4 " 
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(9) (9) 
Note that the normalizing factor is now - compared to ~- in (16) reflecting 

again difference between a four-fold ligand site used to project the octahedron 
and the three-fold site used to project the cube in (15). 

The octahedron quantized on the three fold axis displays all the symmetry 
features of the D3a point group and rotation of one face creating a trigonal prism 
achieves the D3h point group limit. This is exactly opposite to the kinds of starting 
and finishing limits of facial rotation described above in a cube. The D3h figure 
obtained again has intermediate symmetry, the second order parameter (DM)3 
remains zero and for fourth order; 

HD3 ~ = [D(4)J 3 Yo 4 . (27) 

Using operator eigenstates derived [7] from the [A10 + )  and IT20+) sets quan- 
tized under C~, steps analogous to Eqs. (21) and (22) yield at the D3h limit; 

~ 7  [ S(z) (DQ)3 = D3a (asec0) 4 

(DN)3= 2~  D~ [ 8(z) 
a (a sec 0) 4 

9(x) ] 
[ (28 a) (a cosec 0) 4 j ' 

(a cosec 0) 4 ]' (28 b) 

in which D 3 are the constants of (23) and (24). The parameter ratio in this case is; 

(DQ)3 - V 7 0  (29) 

and the fully generalized forms of (26) displaying the dependence on facial twist 
angle are; 

( D Q ) 3 = ~ 7  D~ [ 8(z) 
a (a sec0) 4 

9(x) 10(x) cos 3e ] 
(acosec0) 4 (acosec0) 4 ' (30a) 

(DN)3= 2~2270 D~ [ 16(z) ll(x) 7(x) cos3c~] (30b) 
a (a sec0) 4 (a cosec0) 4 + (a cosec0) 4- " 

As under D], these parameters collapse to those of (28) at the prism limit and 
(25) and (26) at the antiprism. 

3.3. Trigonal Bipyramid 
This study of the Hamiltonian operators makes it obvious that one further 

figure, the regular trigonal bipyramid should be considered. Indeed it completes 
the set of regular figures available in this group. On the four fold axis there are 
two fully cubic regular solids, the cube and the octahedron. These may be regarded 
as the regular tetragonal prism and bipyramid respectively. The regular tetra- 
gonal antiprism discussed above completes this group. We should expect therefore 
that the operators quantized on the three-fold axis would also refer to three 
trigonal bodies. Two such have already been identified, the trigonal antiprism 
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(octahedron) and the trigonal prism discussed immediately above. There remains 
the definition of the regular trigonal bipyramid obtained by a holes for points 
inversion from the regular trigonal prism, in the same sense that the octahedron 
is obtained from the cube (Fig. 2). 

This body is a further example of intermediate symmetry. Unique among 
D3h bipyramids it has nine edges of equal length implying six equilateral faces. 
We propose the special name "trigonal hexahedron" (or simply "hexahedron', 
understanding that the name does not apply to a cube) to distinguish it from 
distorted forms in which there must be a lower edge permutation symmetry. 

The hexahedron preserves many features of cubic symmetry. The orthogonal 
set of Cartesian axes which pass through the cusps of an octahedron are retained. 
They now pass through the middles of the triangular faces at one end and the 
corresponding edge at the other. This retention of a set of orthogonal, equivalent 
Cartesian axes is in general a defining feature of tetragonal or trigonal inter- 
mediate symmetries. This definition does not require either that both ends of 
each axis be identical, nor that these axes correspond to symmetry axes of the 
body. It does require that all three axes have identical environments. 

A second important feature is that the highest D3h symmetry is defined when 
all ligand-ligand distances are equal, not when all metal-ligand distances are the 
same. Again it is a general feature of intermediate symmetries that the maximum 
number of possible equal edge lengths is achieved. This condition is masked in 
cubic figures but is clear in less symmetric systems. 

The Hamiltonian for the hexahedron is given by Eq. (28) with a change in 
sign of the site strengths (z) and (x). This isomorphism is equivalent to that ex- 
pressed on the four fold axis between the cube and the octahedron in Eq. (16). 
Since the projections'in (28) now coincide with the actual metal-ligand bond 
lengths their ratio is; 

R (a sec 0) 

S (a cosec 0) 

1 

This ratio is easily confirmed by geometry (Fig. 2), and identifies the hexa- 
hedron as the body with five vertices lying on the surface of a ~z/4 prolate spheroid. 
It is thus related to cubic bodies by reducing the angle of the projection circle 
in the xy  plane from ~/2 for cubic bodies to re/4. 

The isomorphism between the trigonal prism and the hexahedron shows that 
there is one identifiable one-parameter, trigonal pyramid solution. This figure 
can be used in the same sense as the octahedron was used for tetragonal com- 
plexes, as an undistorted parent figure [3] in the preparation of ground state 
energy diagrams [13] in five coordinate systems. It makes available a geometric 
origin at which (DM)3 vanishes and (DN)3 depends on (DQ) 3. This makes spec- 
troscopic analysis of distorted D3h systems possible in terms of completely de- 
fined parameters which are independent of the symmetry and coordination 
number. It also means that spectrochemical data from five and six coordinate 
systems can be directly compared and the information used in predicting pro- 
perties of D3h n e w  complexes. 
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3.4. The Central Field Formulation of D(1) 

In Eq. (6) the momentum space wave functions are expanded as infinite sums 
of four dimensional spherical harmonics. These functions can be further expanded 
as products of radial and angular spherical harmonics [4, 12]; 

Yntm(O~Ocp) = 7zl(n~ ) Ytm( O(9) (31) 

in which the Yl,,(0~b) are conventional three dimensional position space spherical 
harmonics. The functions nl(ne ) can be subduced into position space in different 
forms, the most familiar of which is as a Lagueure polynomial [14]. These are 
normally used as the hydrogenic radial wave functions and define one-electron 
atomic energies. The eigenvalues in momentum space are derived from overlap 
integrals [12] of the eigenvectors (6) and from the form of (6) molecular energies 
are clearly factored as infinite sums of functions depending on different values 
of n. On subduction into three dimensional position space these molecular over- 
lap integrals become radial integrals in which the single value of n, which charac- 
terizes the wave function, appears to be non-integer. Indeed, Bishop [5] and 
others remark that in single centre treatments of molecules in three dimensional 
space, non-integer values of n are usually observed to improve the fit of calculated 
eigenvalues. 

Such non integral values of n also occur as a natural phenomenon in United 
Atom correlation diagrams [15] of complex molecules. They reflect the changing 
number of radial nodes present in molecular orbitals as the interatomic dis- 
tance is decreased. Indeed for compounds of the type AB, where B is heavier 
than hydrogen, the principal quantum number of the HOMO is almost in- 
variably greater than that of the highest occupied orbital of A in its ground state 
[16]. As an example, the molecular orbitals of [Ti(H20)6] 3+ in the United 
Atom model are shown in Fig. 3. The diagram was constructed using observed 
orbital electronegativities of the metal ion and ligand [17] at the separated atom 
limit and the observed energies [18] of the free trivalent lead ion at the united 
atom limit. Correlation of orbitals in octahedral symmetry requires that the 3dt2o 
level of titanium become 4dt2o of lead and that 3de~ become the 6deg of lead. 
In the complex at its equilibrium internuclear distance (Req.) the principal quantum 
number of both levels is probably between 3 and 4 but clearly must be greater 
than 3. 

Accepting this condition the magnitude of the average power radium integral 
may be re-examined. This integral may be evaluated in terms of n l and Z and 
for fourth order [14], 

n 4 

r 4 = - -  [63n 4 -- 35n2(212 + 21-- 3) + 51(l + 1) (31 z + 31-  10) + 12] 
8Z 4 

(32) 
1 

- 8Z 4 [63n 8 -315n  6+252] 

for d electrons. 
Being essentially a function of n 8, r 4 is very sensitive to small changes in the 

value of the principal quantum number. 
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6p-- 
6s-- 

Pb 3+ [Ti (H20)6 ]3+ Ti3§ 

I 6deg 
k ~  5 g ~  ~ ~ g ~  Ti3d 

8 s . ~  ~AX ~ H202p 
7p 
7s 6d 

2OO 

4d 
~ _ _  Ti3p 

Ti3s 
H2�9 
H2Ols Ti2p Ti2s 

ls Tils 

Req. RTI-O 
Fig. 3. The United Atom correlation diagram for [Ti(H20)6 ] 3 +. The vertical line represents the equi- 
librium ion. The H O M O  is 4dtzg. The transition energy A is the crystal field separation and AZ 

represents the first ligand to metal charge transfer energy 

For example; 

r4(n = 3) 1 

rr 15 
and (33) 

~ ( n = 4 )  1 

rr 7 

It is well known [10] that conventional calculations of r 4 for 3d octahedral com- 
plexes yield values which are a power of l0 too small. Clearly the point charge 
model is inaccurate simply because it fails to recognize the increased value of n 
appropriate to those d electrons as the metal ligand separation is reduced. 
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Calculations of central field models for complexes is rendered no easier by 
thisinsight. However one may reverse the procedure, using the observed value 
of  r 4 to  assign an appropriate value of n in Eq. (32). 

Similar use may be made of the D(4) and D(2) parameters in distorted com- 
plexes. These represent in this model a changing value of n for changing site 
strengths, that is (z) and (x) in Type I groups. Thus rather than reflecting sig- 
nificantly different radial distributions between axial and planar orbitals, DS and 
D T  essentially reflect small changes in the effective principal quantum number 
induced by the ligands. 

This conclusion provides a rational basis for Jorgensen's factorization [17] 

of DQ; DQ = fL " gM (34) 

because it essentially represents the factorization of n 8 into metal and ligand 
contributions. If the metal is assigned the n of the free ion d orbitals, it can be 
multiplied by a unique increasing factor assignable to each ligand. 

The use of Eq. (32) in a United Atom model of metal complexes is being 
further explored. Similar equations for other observables such as B and 2 are 
also being examined to ascertain whether there is quantative agreement between 
predicted and observed trends. Qualitatively, the predicted decreasing values of 
these parameters with increasing n does seem to correlate with the nephelauxetic 
series generated from both variables. Indeed, more subtle aspects of these trends 
are reproduced. The well documented [17] need to define three nephelauxetic 
ratios for B is accounted for in this model by different n values for the t2g and 
e 0 orbitals. In all octahedra; 

n(%) > n(t2o) (35) 
which implies; 

fl(eg) < fi(tzg ) 

as observed experimentally. The situation in tetrahedra is reversed. 
Taken together these pieces of evidence indicate that the United Atom model 

can be a useful theory for the electronic structure of transition metal complexes. 
It is a simple extension of crystal field theory involving a more detailed analysis 
of the various radial parameters. Hopefully, one set of noninteger n (and oc- 
casionally/) values could be used to account for the magnitude of all parameters 
in any complex. 

The chemical ratio defined in Eq. (10) can now be formulated, using the model 
subduced from momentu.m space, as the ratio of radial parameters defined by 
different values of Z and different non integer values of n for the axial and planar 
sets of ligands. Since the ligand field parameters appear in general to show a very 
high dependence on both n and Z, very small chemical differences between sets 
of ligands can result in substantial spectroscopic effects. 
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